0 引言
本文引用地址:
出于保護環境的考慮以及全球面臨的能源短缺現狀,風力發電在世界范圍內得到了快速發展。隨著風電行業的技術進步,風力發電成本逐步降低,在經濟性上已經能夠與核能發電、水力發電展開競爭。當前,我國面臨電力短缺局面,在煤電占主導地位的我國電力行業,因環境承載力限制以及各種因素導致的煤炭短缺局面,煤電發展受到制約。而我國風能資源豐富,風能利用得到了政府的政策支持,風力發電產業面臨前所未有的發展機遇。近幾年來,我國風電產業發展勢頭良好,多個大型風電場處于建設或規劃階段。
我國風電產業發展尚存在諸多制約因素。就技術層面而言,大型風力發電設備生產技術不過關,大多從國外采購或引進技術生產,研發基礎薄弱;對風電機組或風電場的運行特性的研究不足,設備運行管理水平還有待提高。將仿真技術廣泛應用于風力發電設備的設計、試驗測試、運行分析等各個方面風力發電機組廠家,將有助于加快我國風力發電技術的發展步伐,是縮小與發達國家技術差距的捷徑。
1 仿真技術在風力發電系統的應用概況
隨著風力發電在世界的廣泛應用,為降低風力發電成本、提高風能利用效率,風力發電設備單機容量越來越大,同時為風機的設計制造、控制系統設計和運行等各個方面提出了更多的研究課題。傳統的實物測試研究方法已不能滿足發展需要,仿真技術因不受氣象條件的限制,且投入低等優點,逐漸在風力發電機組的研究和測試領域得到了越來越廣泛的應用。
仿真即選取一個物理的或抽象的系統的某些行為特征,用數學模型來表示它們的過程吊車,若用計算機求解數學模型,稱為計算機仿真。通俗說來,仿真是指使用儀器設備、模型、多媒體技術,以及利用場地、環境的布置,模仿出真實系統的工作特性和環境,進而用于科學研究、工業設計、預測預報或教學訓練等目的的一項綜合技術。仿真若僅限于設計研究目的,則勿需仿真對象系統的環境,亦無實時仿真的必要,借助一臺主流微型計算機和商業仿真軟件即可開展仿真研究工作。
1980 年代初,國外學者開始將仿真方法用于風電機組的的性能研究[1] ,其后,仿真技術在風力發電系統的應用范圍逐漸拓展。目前風力發電機組廠家,從風電關鍵設備和控制系統的設計、制造、性能測試與研究,風電機組或風電場運行分析等各個方面均有仿真技術的應用。仿真技術的應用在很大程度上替代了傳統的利用實際設備開展的設計檢驗等手段。主要的研究方向整理如下。
1)風能特性仿真,反映風能的位置分布和時間變化特性。風特性仿真結果將用于風力發電機組或風電場的仿真分析中,是風電仿真研究的基礎。
2)風力發電機組仿真,仿真特定風力機組在風能變化下輸出電能的變化規律,分析其特性,尋找設備本身存在的不足,提供改進建議。表征電能特性的參數主要包括有功功率、無功功率、電壓和頻率。
3)控制系統仿真,建立待檢驗的控制系統的仿真模型和控制對象的仿真模型,建立模型間的相互聯系。改變仿真風電機組的風能參數或工作狀態,測試在各種不同運行方式下控制系統的動作特性和工作效果,尋找控制系統設計中存在的問題,改進設計后修正仿真模型進一步驗證,直到控制系統滿足設計和運行要求。
4)風電場仿真,針對特定風電場的具體風能特性和實際(或規劃設計)安裝的風電機組情況,建立整個風電場的仿真模型。研究風能變化、風機介入或退出系統對風電場電能特性的影響,進而分析風電場建設的可行性,分析風電場不同運行方式下對電力系統的影響,或用于運行人員培訓,提高風電場運行管理水平。
國內利用仿真技術開展風電系統研究的起步較晚,公開發表的仿真研究成果不多,尚未形成氣候。近幾年情況在發生變化,更多的研究人員已經將仿真技術引入風電系統的研究工作中,相信近期內將會有更多的高水平仿真研究成果發表,并能有力促進風電產業的技術進步。
2 風能及風電機組仿真模型
與常規發電機組(如火電、水電、核電)相比,風力發電機組的突出特點是輸入能量不受控制,這一特點導致風力發電機組在構成上與常規發電機組有著很大的不同且呈現出多樣化特點。我們知道,常規發電機組的機械能-電能轉換裝置普遍采用同步發電機,而并網型風電機組采用的發電機則形式多樣,如恒速恒頻同步/異步發電機、交/直/交發電機、磁場調制發電機、交流勵磁雙饋發電機等。因采用的發電機類型不同吊車公司,相應的控制系統區別很大,電能參數隨風能變化的特性也有很大的不同。
仿真研究人員需要根據風力發電機組的特點開發針對性的仿真模型軟件。限于篇幅,本文主要介紹共性部分的仿真。
2.1 典型風力發電機組的仿真模型總體結構
在風電場中得到廣泛應用的恒速風力機如圖1 所示[2],異步發電機將風輪吸收的機械能轉化成電能,發電機轉速隨發電量的變化而在一定范圍內變化,因轉速變化范圍很小(1% 左右),通常稱為恒速系統。恒速系統通常選用失速型調節方式。